Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery

Yigal Gerchak, Diwakar Gupta, Mordechai Henig

2/26/10

Presented by Eric Webb

At the beginning of the day, there are n requests for elective surgery.
The scheduler decides how many of them, m, to admit today.
There is a random, unknown duration of emergency surgeries throughout the day.
These emergency cases take priority over elective cases.
Overloading operating room capacity leads to high costs of overtime pay and/or transporting patients to nearby hospitals.
The Problem

- How do you effectively schedule elective surgeries in an operating room?
- While the number of elective surgery requests is known, the duration of each surgery is unknown.
- The number and duration of emergency surgeries is unknown.
- Hospitals make revenue from elective surgeries.
- Hospitals lose money by exceeding operating room capacity and having to pay overtime.
- We also consider a penalty to delaying elective surgeries.
Motivation

- A cutoff policy is a policy in which every elective surgery is admitted, up to a cutoff number M. After M elective surgeries are admitted, no others are admitted that day.
- M is based on hospital capacity and expected duration of emergency cases.
- Most hospitals use a cutoff policy.
- We want to see if there is a better policy for admitting elective surgery patients.
Expected Revenue in One Day

- Let X_j be the number of new requests for surgery on the j^{th} day.
- Let n be the total number of current requests for surgery, some of which are new and some of which are past requests which have not been fulfilled.
- Let m be the number of elective surgeries to admit today.
- Let π be the expected revenue from each elective surgery.

- Present day expected revenue: πm
Expected Overtime Costs in One Day

- Let Z_i be the unknown duration of the i^{th} elective surgery of the day ($i \in \{1, 2, ..., m\}$).

- Let $S_m = \sum_{i=1}^{m} Z_i$ be the total duration of elective surgeries today.

- Let Y be the random duration of emergency surgeries today.

- Let T be the duration the operating room can be used before overtime pay begins. This value is known.

- Let c be the penalty, per unit time, of exceeding the day’s capacity, T.

- Present day expected overtime cost: $c \mathbb{E}[(Y + S_m - T)^+]$
Expected Delay Penalty in One Day

- The waiting patient and/or society often incurs a cost when individuals are fully or partially unable to function normally.
- Let p be the average daily penalty for the postponement of each elective case by one day.
- Present day expected penalty from postponement: $p(n - m)$
Present day expected profit function

- Out of a pool of \(n \) possible elective surgeries, \(m \) are performed.
- Expected Profit = Elective Surgery Revenue - Expected Overtime Costs - Postponement Penalties

\[
g(m, n) = \pi m - c\mathbb{E}[(Y + S_m - T)^+] - p(n - m)
\]
Concavity of Present Day Profit

Theorem: The function $g(m, n)$ is jointly concave in m and n for every $T \geq 0$. Furthermore, if $\pi + p < cE[Z_1]$, then $g(m, n)$ is bounded from above.

Interpretation:

- We expect the cost of overtime to be greater than the sum of the profit of the extra surgery and the savings of not postponing the surgery.

- There is a maximum on how much profit can be made in this case. The maximum profit is dependent on the operating room capacity, T.
Discounting Future Profit

- Let $f_i(n)$ be the maximal expected discounted profit with i days remaining if there are n outstanding elective cases at the beginning of that day.

- Dynamic programming recursion for determining today’s allotment:

$$f_i(n) = \max_{m \leq n} (g(m, n) + \alpha \mathbb{E}[f_{i-1}(n - m + X)])$$

where $g(m, n)$ is the present day expected profit, α is the daily discount factor ($0 < \alpha < 1$), and X is the number of new arrivals the next day.

- $f_0(n) = 0 \ \forall \ n$

- We will apply the backward recursion an “infinite” number of times to model the reality of an ongoing operating room.
Concavity of $f_i(n)$

Theorem: $f_i(n)$ is concave in $n \forall i$. If $p = 0$, then $f_i(n)$ is also increasing in n.

Interpretation:

- Like our present-day profit examined in the previous theorem, our discounted future profit is also concave in n.
- If there is no penalty to postponing surgeries, then our profit cannot be diminished by having more possible surgeries to schedule.
Discounted Profit of an Ongoing Operating Room

Theorem: If $\pi + p < c\mathbb{E}[Z_1]$, then there exists a concave function f such that $\lim_{i \to \infty} f_i = f$, and which satisfies

$$f(n) = \max_{m \leq n} \left(g(m, n) + \alpha \mathbb{E}[f(n - m + X)] \right)$$

Interpretation: The use of most operating rooms is expected to continue indefinitely. So, without an ending date in sight, this theorem tells us that there is a concave discounted profit function to use to find the optimal policy.
Characterizing the Optimal Number to Admit

Let \(m(n) \) be the value of \(m \) that maximizes \(f(n) \), the maximal expected discounted profit.

\(m(n) \) is non-decreasing in \(n \)

- Numerical example:
 If you would admit 4 surgeries out of a possible 5 surgeries, then you would admit 4 or more out of a possible 6 surgeries.

For every \(n \geq 0 \) and \(d \geq 0 \), \(m(n + d) - m(n) \leq d \)

- Numerical example:
 If you would admit 5 elective surgeries out of a possible 10, then you would admit no more than 7 elective surgeries out of a possible 12.

\(m \) can be found through Value Iteration.
Effect of Arrival Rate

Units are minutes
\[T = 960, \ Y \sim \text{Norm}(400, 640), \ Z_i \sim \text{Norm}(60, 100), \]
\[\pi = \$600, \ c = \$15, \ \alpha = .99, \ \rho = \$0, \]
Arrivals are Poisson with rate listed
Effect of Overtime Cost

Units are minutes

\[T = 960, \ Y \sim \text{Norm}(400, 640), \ Z_i \sim \text{Norm}(60, 100), \]

\[X \sim \text{Poisson}(10), \ \pi = $600, \ \alpha = .99, \ p = $0 \]
Effect of Postponement Penalty

Units are minutes
\[T = 960, \; Y \sim \text{Norm}(400, 640), \; Z_i \sim \text{Norm}(60, 100), \]
\[X \sim \text{Poisson}(10), \; \pi = \$600, \; c = \$15, \; \alpha = .99, \]
Comparison to Cutoff Policy

- It is possible to re-formulate this system to find the best cutoff policy number, M.
 - Add the constraint that $m(n) = \min(n, M)$, where M is the cutoff number.
 - Find the cutoff number that maximizes $f(n)$

- We will compare the optimal policy found in this model to the best cutoff policy to see if there are significant differences.
Avg Arrival Rate, $E(X) = 10$

<table>
<thead>
<tr>
<th>Cutoff # Policy</th>
<th>Optimal Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>m</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
</tr>
</tbody>
</table>
Conclusions

- It is possible to find the optimal policy for making reservations for elective surgery in the face of uncertain demand for emergency surgery.

- The optimal policy is not one of cutoff number, but the relative loss in profit from using the best cutoff number policy is small.

- Finding the optimal policy suggests the best cutoff number.